Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Viruses ; 15(2)2023 02 20.
Article in English | MEDLINE | ID: covidwho-2239802

ABSTRACT

An influenza circulation was observed in Myanmar between October and November in 2021. Patients with symptoms of influenza-like illness were screened using rapid diagnostic test (RDT) kits, and 147/414 (35.5%) upper respiratory tract specimens presented positive results. All RDT-positive samples were screened by a commercial multiplex real-time polymerase chain reaction (RT-PCR) assay, and 30 samples positive for influenza A(H3N2) or B underwent further typing/subtyping for cycle threshold (Ct) value determination based on cycling probe RT-PCR. The majority of subtyped samples (n = 13) were influenza A(H3N2), while only three were B/Victoria. Clinical samples with low Ct values obtained by RT-PCR were used for whole-genome sequencing via next-generation sequencing technology. All collected viruses were distinct from the Southern Hemisphere vaccine strains of the corresponding season but matched with vaccines of the following season. Influenza A(H3N2) strains from Myanmar belonged to clade 2a.3 and shared the highest genetic proximity with Bahraini strains. B/Victoria viruses belonged to clade V1A.3a.2 and were genetically similar to Bangladeshi strains. This study highlights the importance of performing influenza virus surveillance with genetic characterization of the influenza virus in Myanmar, to contribute to global influenza surveillance during the COVID-19 pandemic.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Influenza A Virus, H3N2 Subtype/genetics , Myanmar/epidemiology , Pandemics
2.
J Med Virol ; 2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2232452

ABSTRACT

The global pandemic of the BA.5 subvariant had moved from prediction to reality. In this study, we compared SARS-CoV-2 aerosol emissions from patients with BA.2 or BA.5 subvariant infection. First, patients with BA.2 subvariant infection had higher upper respiratory viral loads than patients with BA.5 subvariant infection. However, the average breath emission rate (BER) of patients with BA.5 subvariant infection, which represented the concentration of exhaled SARS-CoV-2 aerosols, was nearly 40 times higher than that of patients with BA.2 subvariant. Second, aerosols exhaled by patients with BA.5 subvariant infection exhibited SARS-CoV-2 RNA detection positive rate than patients with BA.1 or BA.2 subvariant infection. Meanwhile, for BA.5 subvariant infection, patients that exhaled infectious SARS-CoV-2 aerosols accounted for 14.8% of all patients. Third, since the onset of COVID-19, the SARS-CoV-2 RNA detection signals of throat swabs showed a gradual decline trend, although the decline process was accompanied by fluctuations. Overall, the monitoring of infectious SARS-CoV-2 aerosols may provide the data support for the transmissibility evaluation of the Omicron BA.5 subvariant. This article is protected by copyright. All rights reserved.

3.
J Med Virol ; 95(2): e28539, 2023 02.
Article in English | MEDLINE | ID: covidwho-2219762

ABSTRACT

The newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2.75 and BA.2.76 subvariants contained 35 and 29 additional mutations in its spike (S) protein compared with the reference SARS-CoV-2 genome, respectively. Here, we measured the evasion degree of the BA.1, BA.2, BA.4, BA.5, BA.2.75, and BA.2.76 subvariants from neutralizing immunity in people previously infected with the Omicron BA.1 and BA.2, determined the effect of vaccination on immune evasion, and compared the titers of neutralizing antibodies in serums between acute infection and convalescence. Results showed that the neutralization effect of serums from patients with different vaccination statuses and BA.1/BA.2 breakthrough infection decreased with the Omicron evolution from BA.1 to BA.2, BA.4, BA.5, BA.2.75, and BA.2.76. This study also indicated that the existing vaccines could no longer provide effective protection, especially for the emerging BA.2.75 and BA.2.76 subvariants. Therefore, vaccines against emerging epidemic strains should be designed specifically. In the future, we can not only focus on the current strains, but also predict and design new vaccines against potential mutant strains. At the same time, we can combine the virus strains' infection characteristics to develop protective measures for virus colonization areas, such as nasal protection spray. Besides, further studies on the Y248N mutation of BA.2.76 subvariant were also necessary to explore its contribution to the enhanced immune evasion ability.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , COVID-19 Vaccines/immunology
6.
Environ Int ; 162: 107153, 2022 04.
Article in English | MEDLINE | ID: covidwho-1706132

ABSTRACT

Since December 2019, coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a great challenge to the world's public health system. Nosocomial infections have occurred frequently in medical institutions worldwide during this pandemic. Thus, there is an urgent need to construct an effective surveillance and early warning system for pathogen exposure and infection to prevent nosocomial infections in negative-pressure wards. In this study, visualization and construction of an infection risk assessment of SARS-CoV-2 through aerosol and surface transmission in a negative-pressure ward were performed to describe the distribution regularity and infection risk of SARS-CoV-2, the critical factors of infection, the air changes per hour (ACHs) and the viral variation that affect infection risk. The SARS-CoV-2 distribution data from this model were verified by field test data from the Wuhan Huoshenshan Hospital ICU ward. ACHs have a great impact on the infection risk from airborne exposure, while they have little effect on the infection risk from surface exposure. The variant strains demonstrated significantly increased viral loads and risks of infection. The level of protection for nurses and surgeons should be increased when treating patients infected with variant strains, and new disinfection methods, electrostatic adsorption and other air purification methods should be used in all human environments. The results of this study may provide a theoretical reference and technical support for reducing the occurrence of nosocomial infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Humans , Patient Isolators , Risk Assessment
8.
Nat Cell Biol ; 23(12): 1314-1328, 2021 12.
Article in English | MEDLINE | ID: covidwho-1559292

ABSTRACT

The lung is the primary organ targeted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), making respiratory failure a leading coronavirus disease 2019 (COVID-19)-related mortality. However, our cellular and molecular understanding of how SARS-CoV-2 infection drives lung pathology is limited. Here we constructed multi-omics and single-nucleus transcriptomic atlases of the lungs of patients with COVID-19, which integrate histological, transcriptomic and proteomic analyses. Our work reveals the molecular basis of pathological hallmarks associated with SARS-CoV-2 infection in different lung and infiltrating immune cell populations. We report molecular fingerprints of hyperinflammation, alveolar epithelial cell exhaustion, vascular changes and fibrosis, and identify parenchymal lung senescence as a molecular state of COVID-19 pathology. Moreover, our data suggest that FOXO3A suppression is a potential mechanism underlying the fibroblast-to-myofibroblast transition associated with COVID-19 pulmonary fibrosis. Our work depicts a comprehensive cellular and molecular atlas of the lungs of patients with COVID-19 and provides insights into SARS-CoV-2-related pulmonary injury, facilitating the identification of biomarkers and development of symptomatic treatments.


Subject(s)
COVID-19/genetics , Lung/metabolism , Transcriptome/genetics , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , COVID-19/metabolism , Fibrosis/metabolism , Fibrosis/pathology , Fibrosis/virology , Humans , Lung/pathology , Lung/virology , Proteomics/methods , SARS-CoV-2/pathogenicity
9.
Front Cell Infect Microbiol ; 11: 688007, 2021.
Article in English | MEDLINE | ID: covidwho-1389153

ABSTRACT

Environmental transmission of viruses to humans has become an early warning for potential epidemic outbreaks, such as SARS-CoV-2 and influenza virus outbreaks. Recently, an H7N9 virus, A/environment/Hebei/621/2019 (H7N9), was isolated by environmental swabs from a live poultry market in Hebei, China. We found that this isolate could be transmitted by direct contact and aerosol in mammals. More importantly, after 5 passages in mice, the virus acquired two adaptive mutations, PB1-H115Q and B2-E627K, exhibiting increased virulence and aerosol transmissibility. These results suggest that this H7N9 virus might potentially be transmitted between humans through environmental or airborne routes.


Subject(s)
Environmental Exposure , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , China/epidemiology , Humans , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Mice , Poultry/virology
10.
Data Brief ; 33: 106520, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1023539

ABSTRACT

The year 2020 has changed the living style of people all around the world. Corona pandemic has affected the people in all fields of life economically, physically, and mentally. This dataset is a collection of published articles discussing the effect of COVID and SARS on the social sciences from 2003 to 2020. This dataset collection and analysis highlight the significance and influential aspects, research streams, and themes in this domain. The analysis provides top journals, highly cited articles, mostly used keywords, top affiliation institutes, leading countries based on the citation, potential research streams, a thematic map, and future directions in this area of research. In the future, this dataset will be helpful for every researcher and policymakers to proceed as a starting point to identify the relevant research based on the analysis of 18 years of research in this domain.

11.
Biochem Soc Trans ; 48(5): 2307-2316, 2020 10 30.
Article in English | MEDLINE | ID: covidwho-975033

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by a novel virus of the ß-coronavirus genus (SARS-CoV-2), has been spreading globally. As of July 2020, there have been more than 17 million cases worldwide. Determining multiple transmission routes of SARS-CoV-2 is critical to improving safety practices for the public and stemming the spread of SARS-CoV-2 effectively. This article mainly focuses on published studies on the transmission routes of SARS-CoV-2 including contact transmission, droplet transmission, aerosol transmission and fecal-oral transmission, as well as related research approaches, such as epidemiological investigations, environmental sampling in hospitals and laboratories and animal models. We also provide four specific recommendations for the prevention and control of SARS-CoV-2 that may help reduce the risk of SARS-CoV-2 infection under different environmental conditions. First, social distancing, rational use of face masks and respirators, eye protection, and hand disinfection for medical staff and the general public deserve further attention and promotion. Second, aerodynamic characteristics, such as size distribution, release regularity, aerosol diffusion, survival and decline, infectious dose and spread distance, still require further investigation in order to identify the transmissibility of COVID-19. Third, background monitoring of the distribution of pathogenic microorganisms and environmental disinfection in crowded public places, such as railway stations, schools, hospitals and other densely populated areas, can give early warning of outbreaks and curb the transmission routes of SARS-CoV-2 in those high-risk areas. Forth, establishing novel predictive models can help us to not only assess transmission and impacts in communities, but also better implement corresponding emergency response measures.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Animals , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disease Models, Animal , Humans , Infection Control/methods , Personal Protective Equipment , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Polymerase Chain Reaction , SARS-CoV-2
12.
Cell Res ; 31(4): 415-432, 2021 04.
Article in English | MEDLINE | ID: covidwho-759580

ABSTRACT

Aging is a major risk factor for many diseases, especially in highly prevalent cardiopulmonary comorbidities and infectious diseases including Coronavirus Disease 2019 (COVID-19). Resolving cellular and molecular mechanisms associated with aging in higher mammals is therefore urgently needed. Here, we created young and old non-human primate single-nucleus/cell transcriptomic atlases of lung, heart and artery, the top tissues targeted by SARS-CoV-2. Analysis of cell type-specific aging-associated transcriptional changes revealed increased systemic inflammation and compromised virus defense as a hallmark of cardiopulmonary aging. With age, expression of the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) was increased in the pulmonary alveolar epithelial barrier, cardiomyocytes, and vascular endothelial cells. We found that interleukin 7 (IL7) accumulated in aged cardiopulmonary tissues and induced ACE2 expression in human vascular endothelial cells in an NF-κB-dependent manner. Furthermore, treatment with vitamin C blocked IL7-induced ACE2 expression. Altogether, our findings depict the first transcriptomic atlas of the aged primate cardiopulmonary system and provide vital insights into age-linked susceptibility to SARS-CoV-2, suggesting that geroprotective strategies may reduce COVID-19 severity in the elderly.


Subject(s)
Aging , SARS-CoV-2/physiology , Transcriptome , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Ascorbic Acid/pharmacology , COVID-19/pathology , COVID-19/virology , Cell Line , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/virology , Humans , Interleukin-7/metabolism , Interleukin-7/pharmacology , Macaca fascicularis , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , RNA-Seq , SARS-CoV-2/isolation & purification , Single-Cell Analysis , Transcriptome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL